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A B S T R A C T

It is shown that the two-player Tullock contest admits precisely one equilibrium in randomized strategies.
1. Preliminaries

1.1. Introduction

In Tullock’s (1980) model of political conflict, contestants compete
in efforts to obtain a reward that cannot be easily allocated otherwise.
Suppose there are two contestants, A and B, with respective valuations
of winning given by 𝑉𝐴 ≥ 𝑉𝐵 > 0. When contestants choose efforts
𝑥𝐴 ≥ 0 and 𝑥𝐵 ≥ 0, contestant 𝑖’s payoff is given by

𝑢𝑖(𝑥𝐴, 𝑥𝐵) =
𝑥𝑅𝑖

𝑥𝑅𝐴 + 𝑥𝑅𝐵
𝑉𝑖 − 𝑥𝑖,

where 𝑅 ≥ 0 is an exogenous parameter, and the ratio is interpreted
as 1

2 if otherwise undefined. While that model has been the workhorse
of contest theory for several decades (Beviá and Corchón, 2024), the
equilibrium analysis remained incomplete. Specifically, prior work did
not address the question whether the equilibrium for 𝑅 > 2 is unique.
In this paper, we establish the uniqueness of the mixed equilibrium in
the two-player Tullock contest.

1.2. Statement of the main result

Suppose that each contestant 𝑖 ∈ {𝐴, 𝐵} chooses a probability
distribution over the interval [0, 𝑉𝑖].1 Then, payoffs are bounded, and
a mixed-strategy Nash equilibrium (MSNE) may be defined as usual

✩ The author would like to express his gratitude to the Editor and an anonymous reviewer.
E-mail address: christian.ewerhart@econ.uzh.ch.

1 This assumption is reasonable because bids that exceed the contestant’s valuation are strictly dominated by the zero bid.
2 In particular, our conclusions carry over to variants of the Tullock contest in which players differ in marginal cost or ability rather than valuation. Similarly,

the assumption of nonlinear returns may be replaced by nonlinear cost, using a well-known substitution argument (Szidarovszky and Okuguchi, 1997; Cornes
and Hartley, 2005).

(Dasgupta and Maskin, 1986). The main result of the present paper is
the following.

Theorem 1. The two-player Tullock contest has a unique MSNE, for any
𝑉𝐴 ≥ 𝑉𝐵 > 0 and 𝑅 > 2.

Proof. See Section 3. □

There is a sense in which Theorem 1 completes the equilibrium
analysis of the two-player case. Indeed, for 𝑅 ∈ [0, 1 + (𝑉𝐵∕𝑉𝐴)𝑅], it
was known that a unique equilibrium in pure strategies exists (Nti,
1999). Moreover, for 𝑅 ∈ (1 + (𝑉𝐵∕𝑉𝐴)𝑅, 2], a semi-mixed equilibrium, in
which contestant A plays a pure strategy while contestant B randomizes
between a positive and a zero effort, was known to exist (Wang, 2010).
Finally, for 𝑅 ∈ [0, 2], there are no other MSNE, i.e., the equilibrium
is always unique (Ewerhart, 2017b; Feng and Lu, 2017). Thus, by
covering the remaining case 𝑅 > 2, Theorem 1 indeed rounds up the
equilibrium analysis of the two-player Tullock contest.2

1.3. Summary of the proof

The proof of Theorem 1 makes use of sequence spaces, Cauchy
matrices, and Dirichlet series. Background information on these mathe-
matical tools is provided in an Appendix. The proof has two steps. First,
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we rewrite the condition of complete rent dissipation as an operator
equation in the Banach space of absolutely summable sequences. The
perator is represented by an infinite symmetric Cauchy matrix with
inite supremum norm. Second, we show that the infinite Cauchy
atrix is positive definite.3 For this, we rewrite the infinite Cauchy

matrix as an integral over a parameterized matrix that decomposes
naturally as the outer product of two identical infinite vectors. This
pproach reduces the problem of uniqueness of the mixed equilibrium

to the question if the coefficients of a Dirichlet series are uniquely
determined. As the representation is indeed unique (Hardy and Riesz,
1915), this completes the proof.

1.4. Overview

The remainder of the paper is structured as follows. Section 2
reviews prior work. Section 3 presents the proof of Theorem 1. The
Appendix provides the necessary background on the mathematical tools
mployed in the proof.

2. Prior work on the case 𝑹 > 𝟐

We are aware of four papers that made progress on the research
uestion addressed in the present paper.

Assuming homogeneous valuations and 𝑅 > 2, Baye et al. (1994)
emonstrated that a MSNE with complete rent dissipation exists. In
heir proof, they first derived a bound on the equilibrium payoff in
 discrete version of the game and then employed a limit argument.
hey also explained why the first-order conditions do not identify a
ymmetric Nash equilibrium in pure strategies, thereby resolving an
mportant puzzle in the earlier literature.

Alcalde and Dahm (2010) defined an all-pay auction equilibrium in a
robabilistic contest as a MSNE in which bids, winning probabilities,
nd payoffs coincide, in expectation, with the corresponding values

for the all-pay auction (in the equilibrium with two active bidders).
Moreover, they identified conditions under which a MSNE in a two-
player contest with homogeneous valuations can be transformed into an
ll-pay auction equilibrium in a contest with heterogeneous valuations.
he construction modifies the equilibrium strategy of one player by
aving her abstain from bidding with positive probability.4

In Ewerhart (2017a), the equilibrium set of probabilistic contests
was characterized. In particular, it was shown that any MSNE of the
two-player Tullock contest with 𝑅 > 2 can be constructed as an all-pay
auction equilibrium. Therefore, uniqueness of the MSNE in the special
case where 𝑉𝐴 = 𝑉𝐵 > 0 implies uniqueness for general valuations
𝑉𝐴 ≥ 𝑉𝐵 > 0. Furthermore, since a homogeneous prize in the Tullock
contest can always be normalized to unity without loss of generality, it
ollows that verifying the uniqueness claim in Theorem 1 is sufficient

in the special case where 𝑉𝐴 = 𝑉𝐵 = 1 and 𝑅 > 2.
Focusing on this special case, Ewerhart (2015) further explored the

nature of the MSNE. The following result will be utilized in the proof
of Theorem 1.

Lemma 1 (Ewerhart, 2015). Suppose that 𝑉𝐴 = 𝑉𝐵 = 1 and 𝑅 > 2.
hen, there is a strictly declining sequence of positive bid levels {𝑦𝑘}∞𝑘=1 with
im𝑘→∞ 𝑦𝑘 = 0 that jointly nest the support of any equilibrium strategy.
urther, for any 𝑘 ∈ {1, 2,…}, we have the condition of complete rent
issipation at 𝑦𝑘,

3 As detailed in the Appendix, the standard definition of positive def-
initeness for finite matrices (Debreu, 1952) extends naturally to this
ase.

4 From Alcalde and Dahm (2010, proof of Thm. 3.2), we also deduce that
the uniqueness assertion of Theorem 1 does not extend to 𝑁 ≥ 3 contestants.
Specifically, with 𝑅 > 2 and homogeneous valuations, multiple all-pay auction
equilibria exist, depending on which two contestants are selected to be active.
2 
𝑦𝑘 =
∞
∑

𝑙=1

𝑞𝑙𝑦𝑅𝑘
𝑦𝑅𝑘 + 𝑦𝑅𝑙

,

where 𝑞𝑙 denotes the probability attached by the equilibrium strategy to the
bid level 𝑦𝑙.

Proof. See Ewerhart (2015). □

Thus, under the assumptions of Lemma 1, any equilibrium strategy
places all probability weight on countably many positive bid levels that
re contained in a known set. In particular, any such strategy may be
epresented by a probability distribution {𝑞𝑘}∞𝑘=1.

3. Proof of Theorem 1

Consider the infinite symmetric matrix

𝑌 =

{

𝑦𝑅𝑘 𝑦
𝑅
𝑙

𝑦𝑅𝑘 + 𝑦𝑅𝑙

}∞

𝑘,𝑙=1

,

where the sequence {𝑦𝑘}∞𝑘=1 is defined via Lemma 1. Given that {𝑦𝑘}∞𝑘=1
is strictly declining, the entries of 𝑌 are bounded by
𝑦𝑅𝑘 𝑦

𝑅
𝑙

𝑦𝑅𝑘 + 𝑦𝑅𝑙
≤

𝑦𝑅1
2
.

The following lemma says that, if probability distributions 𝑞∗ = {𝑞∗𝑘}∞𝑘=1
nd 𝑞∗∗ = {𝑞∗∗𝑘 }∞𝑘=1 each represent an equilibrium strategy, then the
ifference 𝑞∗ − 𝑞∗∗ ∈ 𝓁1(R) is in the null space of 𝑌 .

Lemma 2. Let 𝑞∗ = {𝑞∗𝑘}∞𝑘=1 and 𝑞∗∗ = {𝑞∗∗𝑘 }∞𝑘=1 be probability distributions
ach representing an equilibrium. Then, for any 𝑘 ∈ {1, 2,…}, we have
∞

𝑙=1

𝑦𝑅𝑘 𝑦
𝑅
𝑙

𝑦𝑅𝑘 + 𝑦𝑅𝑙
(𝑞∗𝑙 − 𝑞∗∗𝑙 ) = 0.

Proof. From Lemma 1, we see that

𝑦𝑘 =
∞
∑

𝑙=1

𝑞∗𝑙 𝑦
𝑅
𝑘

𝑦𝑅𝑘 + 𝑦𝑅𝑙
.

Hence, exploiting that 𝑞∗ is a probability distribution,

1 − 𝑦𝑘 =
∞
∑

𝑙=1
𝑞∗𝑙

(

1 −
𝑦𝑅𝑘

𝑦𝑅𝑘 + 𝑦𝑅𝑙

)

=
∞
∑

𝑙=1

𝑞∗𝑙 𝑦
𝑅
𝑙

𝑦𝑅𝑘 + 𝑦𝑅𝑙
.

Multiplying through with 𝑦𝑅𝑘 yields
∞

𝑙=1

𝑞∗𝑙 𝑦
𝑅
𝑘 𝑦

𝑅
𝑙

𝑦𝑅𝑘 + 𝑦𝑅𝑙
=
(

1 − 𝑦𝑘
)

𝑦𝑅𝑘 .

Subtracting the analogous relationship in with 𝑞∗ is replaced by 𝑞∗∗

yields the claim. □

We note now that

𝑌 =

{

1
𝑦−𝑅𝑘 + 𝑦−𝑅𝑙

}∞

𝑘,𝑙=1

.

The following result, which might be of independent interest, therefore
completes the proof of Theorem 1.

Lemma 3. Let 𝐶 = {1∕(𝜆𝑘 + 𝜆𝑙)}∞𝑘,𝑙=1 be an infinite symmetric Cauchy
matrix with 0 < 𝜆1 < 𝜆2 < ⋯ and lim𝑘→∞ 𝜆𝑘 = ∞. Then, 𝐶 𝛼 = 0 implies
𝛼 = 0, for any 𝛼 ∈ 𝓁1(R).

Proof. We note that

𝐶 = ∫

∞

0
𝐵(𝑠)𝑑 𝑠,

where
∞
𝐵(𝑠) = {exp(−𝑠(𝜆𝑘 + 𝜆𝑙))}𝑘,𝑙=1.
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Moreover, 𝐵(𝑠) = 𝑏(𝑠)𝑏(𝑠)𝑇 , with

𝑏(𝑠) = {exp(−𝑠𝜆𝑘)}∞𝑘=1 ∈ 𝓁∞(R),

for any 𝑠 ≥ 0. Take now some 𝛼 ∈ 𝓁1(R). Then,

𝛼𝑇𝐵(𝑠)𝛼 =
∞
∑

𝑘,𝑙=1
exp(−𝑠(𝜆𝑘 + 𝜆𝑙))𝛼𝑘𝛼𝑙

=

( ∞
∑

𝑘=1
exp(−𝑠𝜆𝑘)𝛼𝑘

)2

= |

|

|

𝑏(𝑠)𝑇 𝛼||
|

2
.

Noting that

𝑏(𝑠)𝑇 𝛼 =
∞
∑

𝑘=1
𝛼𝑘 exp(−𝑠𝜆𝑘) ≤ ‖𝛼‖1 exp(−𝑠𝜆1)

holds for any 𝑠 ≥ 0, Lebesgue’s dominated convergence theorem implies

∫

∞

0

|

|

|

𝑏(𝑠)𝑇 𝛼||
|

2
𝑑 𝑠 = 𝛼𝑇𝐶 𝛼.

Hence, if 𝐶 𝛼 = 0, then the Dirichlet series ∑∞
𝑘=1 𝛼𝑘 exp(−𝑠𝜆𝑘) vanishes

almost everywhere on the positive real axis. By Lemma A.1 in the
Appendix, this shows that the coefficients 𝛼𝑘 all vanish. Hence, 𝛼 = 0,

hich proves the lemma. □

Appendix. Mathematical tools

This section provides background on the mathematical tools used
n the proof of Theorem 1. Specifically, we discuss sequence spaces
Appendix A.1), Cauchy matrices (Appendix A.2), and Dirichlet series
Appendix A.3).

A.1. Sequence spaces

Let 𝓁1(R) = {𝑥 = (𝑥1, 𝑥2,…) ∶ ‖𝑥‖1 < ∞} denote the Banach space
of absolutely summable sequences, where ‖𝑥‖1 =

∑∞
𝑘=1

|

|

𝑥𝑘||. Further,
let 𝓁∞(R) = {𝑥 = (𝑥1, 𝑥2,…) ∶ ‖𝑥‖∞ < ∞} denote the Banach space of
bounded sequences, where ‖𝑥‖∞ = sup𝑘∈{1,2,…}

|

|

𝑥𝑘||. Then, the product
𝑥𝑇 𝑏 ≡ 𝑏𝑇 𝑥 ≡

∑∞
𝑘=1 𝑥𝑘𝑏𝑘 ∈ R converges absolutely for any 𝑥 ∈ 𝓁1(R) and

𝑏 ∈ 𝓁∞(R) (Aliprantis and Border, 1994, Ch. 16).
Let ∞(R) denote the space of infinite matrices 𝐴 =

{

𝑎𝑘,𝑙
}∞
𝑘,𝑙=1

Cooke, 1950) with finite supremum norm, i.e., matrices for which
sup𝑘,𝑙 |𝑎𝑘,𝑙| < ∞. Then, for any 𝐴 ∈ ∞(R) and 𝑥 ∈ 𝓁1(R), we may
define 𝐴𝑥 ∈ 𝓁∞(R) component-wise via (𝐴𝑥)𝑘 =

∑∞
𝑙=1 𝑎𝑘,𝑙𝑥𝑙 ∈ R. In

particular, for any 𝑥, 𝑥̂ ∈ 𝓁1(R), we have 𝑥𝑇𝐴 ̂𝑥 ≡ (𝐴𝑥)𝑇 𝑥̂ = 𝑥𝑇 (𝐴 ̂𝑥) =
∑∞

𝑘,𝑙=1 𝑎𝑘,𝑙𝑥𝑘𝑥̂𝑙 ∈ R. The null space of 𝐴 ∈ ∞(R) is the set of 𝑥 ∈ 𝓁1(R)
such that 𝐴𝑥 = 0.

An infinite matrix 𝐴 =
{

𝑎𝑘,𝑙
}∞
𝑘,𝑙=1 is called symmetric if 𝑎𝑘,𝑙 = 𝑎𝑙 ,𝑘 for

all 𝑘, 𝑙 ∈ {1, 2,…}. An example is the outer product 𝑏𝑏𝑇 = {𝑏𝑘𝑏𝑙}∞𝑘,𝑙=1 ∈
∞(R), where 𝑏 ∈ 𝓁∞(R). We say that a symmetric infinite matrix
𝐴 ∈ ∞(R) is positive semi-definite if 𝑥𝑇𝐴𝑥 ≥ 0 holds for all 𝑥 ∈ 𝓁1(R).
If, in addition, 𝑥𝑇𝐴𝑥 = 0 implies 𝑥 = 0, then we say that 𝐴 is positive
definite .

A.2. Cauchy matrices

Given positive parameters 𝑐1,… , 𝑐𝑛, for some finite 𝑛 ≥ 1, the matrix

𝐶𝑛 =
{

1
𝑐𝑘 + 𝑐𝑙

}𝑛

𝑘,𝑙=1

is called a symmetric Cauchy matrix. If the parameters 𝑐1,… , 𝑐𝑛 are, in
addition, pairwise distinct, then 𝐶𝑛 is positive definite (Fiedler, 2010,
Thm. A).
3 
Infinite Cauchy matrices may be defined by letting 𝑛 = ∞. As noted
by Schur (1911, p. 18), infinite Cauchy matrices with pairwise different
entries are positive semi-definite. Lemma 3 in the body of the paper
provides conditions under which such matrices are positive definite.

A.3. Dirichlet series

An infinite series of the form

𝑓 (𝑠) =
∞
∑

𝑘=1
𝛼𝑘 exp(−𝑠𝜆𝑘), (A.1)

for a sequence of coefficients {𝛼𝑘}∞𝑘=1 and a frequency 𝜆 = {𝜆𝑘}∞𝑘=1,
where lim𝑘→∞ 𝜆𝑘 = ∞, is called a (general) Dirichlet series. In the special
case where 𝜆𝑘 = 𝑘, the series in (A.1) reduces to a power series in the
ariable 𝑧 = exp(−𝑠). Our interest, however, lies in the case of a general
requency.

Lemma A.1 (Hardy and Riesz, 1915). Suppose that the series in (A.1)
is convergent for 𝑠 = 0, and that for some 𝛿 > 0, we have 𝑓 (𝑠) = 0 for
infinitely many 𝑠 ≥ 𝛿. Then 𝛼𝑘 = 0 for all 𝑘 ∈ {1, 2,…}.

Proof. See Hardy and Riesz (1915, Thm. 6). □
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